Thiokol with Excellent Restriction on the Shuttle Effect in Lithium–Sulfur Batteries

نویسندگان

  • Bin Liu
  • Shan Wang
  • Quanling Yang
  • Guo-Hua Hu
  • Chuanxi Xiong
چکیده

Commercial application of lithium–sulfur (Li–S) batteries is still greatly hampered by several issues, especially the shuttle effect of polysulfides. In this work, we proposed a simple but effective method to restrain the shuttle of the soluble polysulfides by adopting a novel binder of Thiokol in the sulfur cathode. Compared to the battery with conventional polyvinylidene fluoride (PVDF) binder, the initial discharge capacity for the battery with the Thiokol binder were increased by 42%, that is from 578 to 819 mAh/g, while the capacity after 200 cycles were increased by 201%, which is from 166 to 501 mAh/g. Besides, according to the rate capability test cycling from 0.1 to 1 C, the battery with the Thiokol binder still released a capacity amounting to 90.9% of the initial capacity, when the current density returned back to 0.1 C. Based on the UV–vis and ex situ XRD results, it is reasonably proposed that the reactions with polysulfides of the Thiokol help to restrain the shuttle effect of polysulfides. It is therefore suggested that the novel Thiokol binder holds promise for application in high-performance lithium–sulfur batteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible Carbon Nanotube Modified Separator for High-Performance Lithium-Sulfur Batteries

Lithium-sulfur (Li-S) batteries have become promising candidates for electrical energy storage systems due to their high theoretical specific energy density, low cost and environmental friendliness. However, there are some technical obstacles of lithium-sulfur batteries to be addressed, such as the shuttle effect of polysulfides. Here, we introduced organically modified carbon nanotubes (CNTs) ...

متن کامل

Improving the performance of Lithium-Sulfur Batteries using Sulfur-(TiO2/SiO2) yolk–shell Nanostructure

Lithium-Sulfur (Li-S) batteries are considered as one of the promising candidates for next-generation Li batteries in near future. Although, these batteries are suffering from certain drawbacks such as rapid capacity fading during the charge and discharge process due to the dissolution of polysulfides. In this paper, Sulfur/metal oxide (TiO2 and SiO2) yolk–shell structures have been successfull...

متن کامل

Encapsulation of S/SWNT with PANI Web for Enhanced Rate and Cycle Performance in Lithium Sulfur Batteries

Lithium-sulfur batteries show great potential to compete with lithium-ion batteries due to the fact that sulfur can deliver a high theoretical capacity of 1672 mAh/g and a high theoretical energy density of 2500 Wh/kg. But it has several problems to be solved in order to achieve high sulfur utilization with high Coulombic efficiency and long cycle life of Li-S batteries. These problems are main...

متن کامل

Multifunctional Sandwich‐Structured Electrolyte for High‐Performance Lithium–Sulfur Batteries

Due to its high theoretical energy density (2600 Wh kg-1), low cost, and environmental benignity, the lithium-sulfur (Li-S) battery is attracting strong interest among the various electrochemical energy storage systems. However, its practical application is seriously hampered by the so-called shuttle effect of the highly soluble polysulfides. Herein, a novel design of multifunctional sandwich-s...

متن کامل

Cathodes for Long Cycle Life and High Power Density Lithium Ion Batteries

wileyonlinelibrary.com lower than counterpart anodes. [ 5–7 ] The energy density of current lithium ion batteries is mainly limited by cathode materials. Due to a high theoretical capacity of 1672 mAh g −1 , sulfur has been considered as the next generation cathode for high energy Li-ion batteries, [ 8–12 ] and it has attracted considerable research interest from both academy and industry. Howe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018